QuRe: Query-Relevant Retrieval through Hard Negative Sampling in Composed Image Retrieval
Jan 5, 2025·
,,·
0 min read
Jaehyun Kwak

Izaaz Inhar
Seyoung Yun
Sung-Ju Lee
Abstract
Composed Image Retrieval (CIR) retrieves relevant images based on a reference image and accompanying text describing desired modifications. However, existing CIR methods only focus on retrieving the target image and disregard the relevance of other images. This limitation arises because most methods employing contrastive learning-which treats the target image as positive and all other images in the batch as negatives-can inadvertently include false negatives. This may result in retrieving irrelevant images, reducing user satisfaction even when the target image is retrieved. To address this issue, we propose Query-Relevant Retrieval through Hard Negative Sampling (QuRe), which optimizes a reward model objective to reduce false negatives. Additionally, we introduce a hard negative sampling strategy that selects images positioned between two steep drops in relevance scores following the target image, to effectively filter false negatives. In order to evaluate CIR models on their alignment with human satisfaction, we create Human-Preference FashionIQ (HP-FashionIQ), a new dataset that explicitly captures user preferences beyond target retrieval. Extensive experiments demonstrate that QuRe achieves state-of-the-art performance on FashionIQ and CIRR datasets while exhibiting the strongest alignment with human preferences on HP-FashionIQ dataset.
Type
Publication
Proceedings of 42nd International Conference on Machine Learning